A Recent Development of Numerical Methods for Solving Convection-Diffusion Problems
نویسندگان
چکیده
Convection-Diffusion Problems occur very frequently in applied sciences and engineering. In this paper, the crux of research articles published by numerous researchers during 2007-2011 in referred journals has been presented and this leads to conclusions and recommendations about what methods to use on Convection-Diffusion Problems. It is found that engineers and scientists are using finite element method, finite volume method, finite volume element method etc. in flu id mechanics. Here we discuss real life problems of fluid engineering solved by various numerical methods .which is very useful for finding solution of those type of governing equation, whose analytical solution are not easily found.
منابع مشابه
Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملA Fourth-Order Compact Finite Difference Scheme for Solving Unsteady Convection-Diffusion Equations
Convection-diffusion equations are widely used for modeling and simulations of various complex phenomena in science and engineering (Hundsdorfer & Verwer, 2003; Morton, 1996). Since for most application problems it is impossible to solve convection-diffusion equations analytically, efficient numerical algorithms are becoming increasingly important to numerical simulations involving convection-d...
متن کاملGalerkin Finite Element Method and Finite Difference Method for Solving Convective Non-linear Equation
The fast progress has been observed in the development of numerical and analytical techniques for solving convection-diffusion and fluid mechanics problems. Here, a numerical approach, based in Galerkin Finite Element Method with Finite Difference Method is presented for the solution of a class of non-linear transient convection-diffusion problems. Using the analytical solutions and the L2 and ...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملOn the natural stabilization of convection diffusion problems using LPIM meshless method
By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...
متن کامل